| Name: | Date: | |--------|--------| | Topic: | Class: | | Topic: | Class: | |---------------------------------|---| | Main Ideas/Questions | Notes | | Angles Angles C | An angle is formed by two with a common endpoint. This common endpoint is called the The rays are called the Name an angle using letters. The middle letter must always represent the vertex! Use a single letter if there is only one angle located at the vertex. When referring to the measure of an angle, use a lowercase m. Example: m∠ABC = 60° | | types
of Angles | | | Example I | a) Name the vertex of the angle | | $\stackrel{K}{\longrightarrow}$ | b) Name the sides of the angle c) Give three ways to name the angle d) Classify the angle | | Example 2 | a) Name the vertex of the angle | | R T S | b) Name the sides of the angle. c) Give three ways to name the angle. d) Classify the angle. | | Congruent
Angles | If, then the angles are congruent. This is written as A A A A A A A A | ## A _____ that divides an angle into _____ **Angle Bisector** In the diagram to the right, _____ is an angle bisector, therefore, _____ Two lines that _____ at a Perpendicular Lines The symbol for perpendicular is _____. In the diagram to the right, _____. A line, segment, or ray _____ $L^{\widehat{\Phi}}$ Perpendicular to a segment at its _____. **Bisector** In the diagram to the right, is the $M \Psi$ perpendicular bisector to _____. Example 3 **a)** Write another name for $\angle CBF$. **b)** Name the sides of $\angle EBD$. c) Classify $\angle ABC$. d) Give an example of an obtuse angle. e) Name two congruent angles. f) Name a perpendicular bisector. _____ a) Name the vertex of $\angle 2$. Example 4 **b)** Name the sides of ∠4. _____ c) Write another name for ∠3. **d)** Write another name for ∠1. _____ e) Classify ∠YTW. _____ f) Classify ∠YTU. _____ Wg) Classify $\angle XTU$. h) Classify ∠WTX. _____ Name two perpendicular lines. j) Name an angle bisector. _____ Name: Date: Topic: Class: ## ANGLE ADDITION Main Ideas/Questions **Notes/Examples** A D B C Postulate Use the diagram below to answer questions 1 and 2. If D is in the interior of $\angle ABC$, then - **1.** If $m \angle ABD = 48^{\circ}$ and $m \angle DBC = 78^{\circ}$, find $m \angle ABC$. - **2.** If $m \angle DBC = 74^{\circ}$ and $m \angle ABC = 119^{\circ}$, find $m \angle ABD$. - **3.** If $m \angle PQR = 141^{\circ}$, find each measure. *x* = _____ $m \angle PQS = \underline{\hspace{1cm}}$ $m \angle SQR =$ **4.** If $m\angle DEF = (7x + 4)^\circ$, $m\angle DEG = (5x + 1)^\circ$, and $m\angle GEF = 23^\circ$, find each measure. *x* = _____ *m∠DEG* = _____ $m \angle DEF =$ **5.** If $m \angle JKM = 43^\circ$, $m \angle MKL = (8x - 20)^\circ$, and $m \angle JKL = (10x - 11)^\circ$, find each measure. *x* = _____ *m∠MKL* = _____ *m∠JKL* = _____ *x* = _____ *m∠DEG* = _____ *m∠GEF* = _____ $m\angle DEF =$ **7.** If $m \angle TUW = (5x + 3)^\circ$, $m \angle WUV = (10x - 5)^\circ$, and $m \angle TUV = (17x - 16)^\circ$, find each measure. *x* = _____ *m∠TUW* = _____ $m \angle WUV =$ *m*∠*TUV* = _____ **8.** If $m \angle ECD$ is six less than five times $m \angle BCE$, and $m \angle BCD = 162^\circ$, find each measure. *m∠BCE* = _____ *m∠ECD* = _____ ## Use the diagram to the left to answer questions 9 and 10. **9.** If $m \angle ABF = (6x + 26)^{\circ}$, $m \angle EBF = (2x - 9)^{\circ}$, and $m \angle ABE = (11x - 31)^{\circ}$, find $m \angle ABF$. **10.** If \overrightarrow{BD} bisects $\angle CBE$, $\overrightarrow{BC} \perp \overrightarrow{BA}$, $m\angle CBD = (3x + 25)^\circ$, and $m\angle DBE = (7x - 19)^\circ$, find $m\angle ABD$. **6.** If $m \angle CDF = (3x + 14)^\circ$, $m \angle FDE = (5x - 2)^\circ$, and $m \angle CDE = (10x - 18)^\circ$, find each measure. **7.** If $m\angle LMP$ is 11 degrees more than $m\angle NMP$ and $m\angle NML$ = 137°, find each measure. $$m\angle LMP = \underline{\hspace{1cm}}$$ **8.** If $m \angle ABC$ is one degree less than three times $m \angle ABD$ and $m \angle DBC = 47^{\circ}$, find each measure. $$m\angle ABD = \underline{\hspace{1cm}}$$ **9.** If \overrightarrow{QS} bisects $\angle PQT$, $m\angle SQT = (8x - 25)^\circ$, $m\angle PQT = (9x + 34)^\circ$, and $m\angle SQR = 112^\circ$, find each measure. $$m\angle PQT = \underline{\hspace{1cm}}$$ $$m \angle TQR = \underline{\hspace{1cm}}$$ **10.** If $$\angle CDE$$ is a straight angle, \overrightarrow{DE} bisects $\angle GDH$, $m\angle GDE = (8x - 1)^\circ$, $m\angle EDH = (6x + 15)^\circ$, and $m\angle CDF = 43^\circ$, find each measure. $$x =$$ _____ $$m\angle FDE = \underline{\hspace{1cm}}$$